LBRY Block Explorer

LBRY Claims • office-hours-7-with-easy-theory-nfa-to

c6f1b0bceee2a484f2a3c0c247b70f47fc366621

Published By
Created On
8 Oct 2021 17:13:09 UTC
Transaction ID
Cost
Safe for Work
Free
Yes
Office Hours #7 with Easy Theory - NFA to DFA, GNFA Conversion (NFA to Regular Expression)
Powered by Restream https://restream.io/

Patreon: https://www.patreon.com/easytheory
Twitch: https://www.twitch.tv/easytheory
Mixer: https://mixer.com/easytheory
Discord: https://discord.gg/SD4U3hs
Facebook: https://www.facebook.com/easytheory/
Twitter: https://twitter.com/EasyTheory
Teespring: https://teespring.com/pumping-lemma-for-regular-lang

If you like this content, please consider subscribing to my channel: https://www.youtube.com/channel/UC3VY6RTXegnoSD_q446oBdg?sub_confirmation=1

▶SEND ME THEORY QUESTIONS◀
ryan.e.dougherty@icloud.com

▶ABOUT ME◀
I am a professor of Computer Science, and am passionate about CS theory. I have taught over 12 courses at Arizona State University, as well as Colgate University, including several sections of undergraduate theory.

▶ABOUT THIS CHANNEL◀
The theory of computation is perhaps the fundamental theory of computer science. It sets out to define, mathematically, what exactly computation is, what is feasible to solve using a computer, and also what is not possible to solve using a computer. The main objective is to define a computer mathematically, without the reliance on real-world computers, hardware or software, or the plethora of programming languages we have in use today. The notion of a Turing machine serves this purpose and defines what we believe is the crux of all computable functions.

This channel is also about weaker forms of computation, concentrating on two classes: regular languages and context-free languages. These two models help understand what we can do with restricted means of computation, and offer a rich theory using which you can hone your mathematical skills in reasoning with simple machines and the languages they define.

However, they are not simply there as a weak form of computation--the most attractive aspect of them is that problems formulated on them are tractable, i.e. we can build efficient algorithms to reason with objects such as finite automata, context-free grammars and pushdown automata. For example, we can model a piece of hardware (a circuit) as a finite-state system and solve whether the circuit satisfies a property (like whether it performs addition of 16-bit registers correctly). We can model the syntax of a programming language using a grammar, and build algorithms that check if a string parses according to this grammar.

On the other hand, most problems that ask properties about Turing machines are undecidable. This Youtube channel will help you see and prove that several tasks involving Turing machines are unsolvable---i.e., no computer, no software, can solve it. For example, you will see that there is no software that can check whether a C program will halt on a particular input. To prove something is possible is, of cours
...
https://www.youtube.com/watch?v=NnYhVt-dB8U
Author
Content Type
Unspecified
video/mp4
Language
English
Open in LBRY

More from the publisher

Controlling
VIDEO
PROOF
Controlling
VIDEO
NONDE
Controlling
VIDEO
THE R
Controlling
VIDEO
PUMPI
Controlling
VIDEO
THE "
Controlling
VIDEO
GOOD
Controlling
VIDEO
QUOTI
Controlling
VIDEO
LINEA
Controlling
VIDEO
DOES